DesertUSA- Desert Food Chain -

Part 1
By Jay W. Sharp

Video available on this subject. Click Here for a movie on the Food Chain Video available on this subject.

A food chain constitutes a complex network of organisms, from plants to animals, through which energy, derived from the sun, flows in the form of organic matter and dissipates in the form of waste heat.  The food chain’s biological productivity and species diversification depend on factors such as the daily duration and angle of seasonal sunlight, the timely availability of water, the daily swings of seasonal temperatures, the chemical content of the soils, and the availability of nutrients. 

The food chain complies with two of the most basic notions in biology.  First, it has an energy source, in this case, the sun, and an energy “sink,” in this instance, space.  The sun fuels the work required for biologic processes.  Space receives the waste heat produced by the work.  Otherwise, temperatures would rise to the point that the community of organisms would perish.  Second, by definition, a food chain comprises a system of interdependent species.   A single isolated species would sooner or later consume the supply of chemicals it needs to live, grow and reproduce.  It would perish. 

Producers and Consumers

In a food chain in our Southwestern desert region – as in a food chain in any other biologically distinctive region, or “biome,” on earth – it is the plants, or the “producers,” that capture the energy from the sun and initiate the flow, becoming the first link in the chain.  In an almost magical-seeming process called “photosynthesis,” which means “gathering of light,” all plants – from one-celled diatoms to mesquite and creosote shrubs to the towering saguaro cactus to riverside cottonwoods and willows – use the sun’s energy, with water and carbon dioxide, to produce a carbohydrate, or sugar, called “glucose,” a basic component in the food chain.  The plants then use the glucose to produce the carbohydrates, proteins and fats required for reproduction and growth, drawing nourishment from various soil nutrients, for instance, nitrogen, phosphorus and potassium.  As producers, the plants, in effect, create storehouses of solar energy, setting the dinner table, often impoverished in the desert, for the animals, the “consumers.” 

Bumblee, primary consumer that feeds on plant nectar.

Plant-eating animals – the herbivores, or “primary” consumers – become the second link in the food chain.  Flesh-eating animals – the carnivores, or “secondary” and even “tertiary” consumers – become the next links.  Plant and flesh eaters – the omnivores, like human beings, for example – span two or three links.    Scavengers, or the detritivores, become the next link in the food chain, and microorganisms, or decomposers, the final consumer link.  Decomposers free up nutrients for recycling within the food chain. 

Ladybird Beetle, secondary consumer that feeds on plant-eating insects such as aphids.

In eating plant and/or animal matter, consumers are, in effect, “fueling up” on stored solar energy, although they surrender the great majority of it as waste heat.  At each of the food chain links – called “trophic levels” – the consumers give up roughly 90 percent of the energy they ingest.  This means that 100 units of plant energy are required to sustain the 10 units of herbivore energy that are required to sustain one unit of carnivore energy.  For example, 100 units of grass and shrub energy are required to sustain the 10 units of desert cottontail energy that are required to sustain one unit of red-tailed hawk energy.  It also means that the producers – the plants – constitute 90 percent of all living matter, or “biomass,” in a biological system such as a food chain, and that the consumers – the animals – account for only the remaining 10 percent.  Plant productivity, always tenuous in our hard and unforgiving deserts, can impose severe limits on the consumer population.   

The Southwest Deserts vs Tropical Rainforests

Our Southwest deserts, which rank among the least biologically productive biomes on earth, resemble a biological wasteland in comparison, for instance, to tropical rainforests, which rank among the most biologically productive biomes.  The contrast reflects differences in those factors that impose limits on biological productivity and diversity.

In our deserts, which lie about 2500 to 3000 miles north of the equator, our longest summer days last for about 14 hours and the shortest winter days, about 10 hours.  Energy received from the sun waxes and wanes with the seasons.  Our precipitation, totaling no more than a few inches in an average year, falls erratically, primarily in the late summer, in late summer and winter, or in the winter, depending on location.  Moreover, our evaporation rates, accelerated by a relentless sun and restless winds, can exceed the precipitation rates by tenfold or more.  Our daily air temperatures swing from moderate to very hot in the summer and cold to moderate in the winter.  We have clearly defined growing seasons and dormant seasons.  Our soils, especially in the dry lower basins where brimming lakes stood during the late Pleistocene, or Ice Age, times, often bear heavy concentrations of minerals, especially alkali salts – a poison to the food chain – and they offer relatively little organic matter, or nutrients, for instance, nitrogen, to foster plant growth.

In tropical rainforests – equatorial lands of perpetual summer and a never-ending growing season – daylight lasts for roughly half of the 24 hours all year long.  Energy received from the sun remains fairly constant throughout the year.  Rain comes, not by the inch, but by the foot—from six to 30 feet per year.  Water lost by evaporation is largely trapped in the humid microclimate surrounding a rainforest then simply returns in the form of more rainfall.  Air temperatures range from the high 60s (in degrees Fahrenheit) to the low 90s throughout the year.  Rainforest soils are comparatively free of harmful mineral residue.  Nutrients, freed from rapidly decomposing organic matter by the decomposers, re-enter the food chain almost immediately, always encouraging more growth. 

As a result of the differences between the two biomes, the total organic matter, or “biomass,” produced by the food chains of our Southwestern deserts amounts to no more than a small fraction of the biomass produced by the food chains of comparably sized tropical rainforests.  The variety of species of wild plants and animals supported by our Southwestern desert biome probably numbers in the few tens of thousands.  The number of species supported by a comparably sized rain forest might number in hundreds of thousands or even millions.

Stream that issues from mountain range and disappears into loosely consolidated soils of the desert floor.

The Setting, Origin and Development of Our Deserts

Our biologically demanding Chihuahuan, Sonoran and Mojave Deserts – each a collection of basins – bear the designation of “hot” deserts, contrasting starkly, for example, with the much colder Great Basin Desert.  The hot deserts’ basins lie among a succession of roughly linear, north-south trending mountain ranges, with some peaks reaching 13,000 feet in height, well above the timber line.  The desert basins and their mountain neighbors form the geographic heart of what geologists call the “Basin and Range Province,” which extends across the Southwestern United States from the Pecos River in the east to the Pacific coast in the west. 

Generally, the three deserts, which blanket more than 350,000 square miles – an area larger than France, Great Britain and Portugal combined – have been filled with sandy-to-fine stream-deposited, or “alluvium,” soils, which form the classic broad desert “flats.”  The soils, products not only of flowing water, wind and changing temperatures but also of chemical processes and biological agents, often have upper layers that are impoverished in organic content and lower layers, or hardpans, that are virtually solidified beds of calcium carbonate and silica.  At the mouths of mountain canyons, the basins are marked by semicircular alluvial “fans” or by coalescing alluvial fans (called “bajadas”), which have been formed by loosely consolidated sand, silt, rocks and boulders carried down the drainages by rushing waters in partnership with gravity.  Basin runoff from the mountain slopes and the irregular but often intense desert rain storms empties into either the Rio Grande or the Colorado River drainage systems, or soaks down and disappears into loosely compacted desert soils, or collects temporarily in the highly mineralized normally dry lake beds called “playas.” 

The Basin and Range Province’s stratified sedimentary mountains such as the Sacramentos of south-central New Mexico or the Franklins of western Texas have uplifted and tilted like listing barges along fault lines, leaving a steep slope (like the side of the barge) on one side and a more gentle slope (like the deck of the barge) on the other.  The volcanic ranges such as the Santa Catalinas near Tucson formed when molten rock from deep within the earth erupted through the surface, raising a tortured, mountainous mass of basalt and other igneous materials. 

The basins, already arid, evolved into full deserts beginning about eight to 10 thousand years ago, as the Pleistocene Epoch and the last great Ice Age, drew to a close.  While their annual average temperatures rose gradually through time on one hand, the basins experienced dwindling rainfall on the other hand.  Eastern mountain ranges hijacked much of the moisture from summertime systems moving west and northwest from the Gulf of Mexico.  Western mountain ranges stole most of the moisture from winter storm systems moving onshore from the Pacific Ocean.  The basins’ wide-spread Ice Age pinyon-juniper-oak woodlands – or, “pygmy” forests – retreated, over time, from the basin floors up to the lower slopes of the mountains, giving way to desert vegetation and animal life.  The Chihuahuan, Sonoran and Mojave Deserts, with differing elevations and climates, gave rise to varying plant and animal communities.

The Chihuahuan Desert

The Chihuahuan Desert, the easternmost of the three deserts, begins deep in Mexico, near San Luis Potosi, and extends north northwest between two mountain ranges, for more than 1000 miles, reaching across western Texas and into New Mexico and southeastern Arizona.  The largest desert in north America, it spans 175,000 to 200,000 square miles, an area roughly the size of Spain.

With most of its rainfall intercepted by mountain ranges to its immediate east and west, the Chihuahuan Desert typically receives only about eight or nine inches of precipitation a year, primarily from summer storm cells out of the Gulf of Mexico.  Its summer air temperatures range from the 60s at night to 100 degrees or more during the daytime.  Its winter temperatures frequently fall below freezing at night, especially in the northernmost basins, and usually rise to the high 50s or low 60s during the day.  The Chihuahuan Desert’s chilly winters reflect its relatively high elevations, which range from 1000 to 5000 feet but average approximately four-fifths of a mile above sea level. 

In the northern half of the Chihuahuan Desert, much of the water runoff flows down the Rio Grande drainage system, headed for the Gulf of Mexico.  Other runoff flows down streams, for instance, the Mimbres River out of the Gila Wilderness, only to disappear into desert sands.  Still other runoff collects in playas (remnant lakes from the Ice Ages), for example, the salt flats immediately west of the Guadalupe Mountains in western Texas or the mineralized Live Oak and Duck Lakes beside the historic Camino Real de Tierra Adentro in Mexico’s state of Chihuahua. 

Typically, honey mesquites, prickly pears, yuccas and grama grasses dominate the lower basin soils.  The creosote bush, a tenacious and toxic competitor for water, takes over on the gravely slopes.  The lechugilla presides over a spiny armada of ocotilla, sotol, barrell cactus, cholla and yuccas on the alluvial fans and bajadas.  Before settlers cleared bottomlands to make way for the plow, dense stands of willows and cottonwoods crowded the banks of the Rio Grande.  Salt-loving, or halophytic, plants grow along the margins of the alkaline playas.  A surprisingly lengthy list of desert-adapted mammals, birds, reptiles, amphibians, invertebrates and even fish represent the animal life of the Chihuahuan Desert.  

The Sonoran Desert

The Sonoran Desert begins in northwestern Mexico, on both sides of the Gulf of California, and it extends northward for hundreds of miles into southern Arizona and California.  It covers about 120,000 square miles, an area comparable to the total land mass of the British Isles.  The northern one-third of the desert lies within Arizona and California. 

Big Horn Sheep grazing on vegetation in the desert.

The Sonoran Desert, in the United States, receives about six to 12 inches of rain per year in the northeast, in the region called the “Arizona Upland,” where elevations reach about 3000 feet above sea level.  It receives three inches or less in the southwest, in the region called the “Lower Colorado Valley,” where the Colorado River enters the Gulf of California at sea level.   The Arizona Upland, the wettest part of the desert, experiences two rainy seasons each year, one in late summer as a result of storm systems from the Gulf, the other in the winter as a result of storm systems from the Pacific.  On average, the Lower Colorado Valley – well beyond the reach of Gulf storms – receives barely a quarter to a half inch of rain per month from the late summer into the following spring and less than one-tenth of an inch per month in early summer.  It is the driest region within the Sonoran Desert and among the most parched within the United States.

The Arizona Upland summer air temperatures range from the mid-70s at night to over 100 degrees Fahrenheit during the day.  Its winter temperatures range from the 40s at night to the mid 60s during the day.  By contrast, the Lower Colorado Valley summertime temperatures range from the high 70s or low 80s at night to well over 100 degrees during the day.  The summer daily temperatures, in fact, often rank among the nation’s highest, sometimes reaching 120 degrees during the day with surface soil temperatures reaching 180 degrees.  The Lower Colorado Valley’s winter temperatures typically fall between mid- to high 40s at night and climb to the high to low 60s during the day. 

In the United States’ third of the Sonoran Desert, water runoff flows down the Colorado River drainage system, toward the Gulf of California.  In other instances, it simply soaks into the desert floor or empties into playas. 

As a result of summer and winter rainy seasons, higher annual average rainfall, relatively low elevation and moderate winter temperatures, the most diverse wild plant and animal communities of all the deserts in the Basin and Range Province populate the Arizona Upland.  In fact, the mix of pod-bearing trees, 50-foot tall Saguaros and other columnar cacti, and various shrubs of the Arizona Upland is viewed by some scientists, not as a desert, but as a “thornscrub,” plant population.  The more humble creosote, brittlebush and bursage shrubs grow in the hotter and drier Lower Colorado Valley.  Altogether, the richly varied Sonoran Desert biological community includes not only several thousand species of plants, but also more than 100 species of mammals, more than 500 species of birds, about 100 species of reptiles, 20 species of amphibians, 30 species of freshwater fishes, and a large cast of insects and spiders.

The Mojave Desert

The Mojave Desert, covering 54,000 square miles and encompassing the storied Death Valley, lies north of the Sonoran Desert, in southern California, southern Nevada, northwestern Arizona and southwestern Utah.  Although it is the smallest of the three deserts, it has the most widely contrasting environments and landscapes.

In its higher elevations, at approximately 5000 feet, the desert’s annual rainfall varies widely from year to year but averages perhaps five or six inches, primarily the product of winter Pacific storms.  Typical summer temperatures range from the 60s to the 90s, and winter temperatures range from solid freezes to high 50s and to low 60s.  In the lower elevations, for instance, in salt flats in Death Valley, the rainfall may average no more than two inches per year, falling primarily in the winter, and it may not come at all in some years.  The summer temperatures typically remain in the 80s at night and climb to more than 110 degrees during the day.  Summer air temperatures at Death Valley’s Badwater, 282 feet below sea level – the lowest point in the Western Hemisphere – can exceed 130 degrees, higher, even, than the temperature of the Lower Colorado River and some of the highest recorded in North America.  Soil temperatures at the surface can reach 190 degrees, just 22 degrees short of the boiling temperature of water at sea level.  Winters bring much cooler weather, with typical temperatures ranging between the 40s and the 60s and 70s.  The Mojave Desert, with more than 500 square miles lying below sea level, traps virtually all the runoff from mountain ranges and occasional showers. 

Although the Mojave is the least hospitable of our deserts, it nevertheless harbors an interesting and varied population of wild plants and animals.  Lying between the hot Sonoran Desert immediately to the south and the much cooler Great Basin Desert immediately to the north, it shares some plant and animal species with its neighbors, but it also has its own signature species, most notably, the Joshua tree, a 50-foot tall yucca that grows in the higher elevations.  Desert brush such as mesquites, creosote bush, big sagebrush and various cactus species – widely scattered in their competition for the limited water – cover much of the lower elevations.  With the exception of microscopic plants, only a few salt-tolerant species such as the pickleweed and rushes grow within the salt flats.  In spite of the harsh conditions, the Mojave has dozens of species of mammals, birds, reptiles and amphibians as well as several species of fish, and it has an abundance of invertebrate creatures. 

Mountain and River Plants and Animals

While the distinctive plant and animal communities of our three hot deserts typify the resilience and adaptability of life under harsh conditions, the plant and animal life of the mountains and river systems enrich the biological stew of the Basin and Range Province. 

Coyote looking for a little lunch.

In the ranges, which rise like islands from the desert floor, precipitation increases (up to an annual average of 30 inches or more) and temperatures decline with rising mountain elevations.  Pygmy forests of juniper, pinyon pine and oaks mixed with shrubs – refugees from the Ice Age basins – cover the lower slopes.  As the slopes ascend, the pygmy forests melt into ponderosa pine forests that give way to mixed conifer forests that, in turn, give way to subalpine forests that finally, at about 11,500 feet elevation, fade into treeless alpine tundra.  Mammals, birds, reptiles, amphibians, fish and invertebrates, occupying environmental niches quite different from those of the desert, form distinctive mountain communities.  Some mammals and many birds migrate between the mountains and the deserts in seasonal quests for food sources and accommodating habitat. 

Along the Rio Grande and its tributaries, which drain most of the northern Chihuahuan Desert, and along the Colorado River and its tributaries, which drain most of the northern Sonoran Desert, gallery forests of cottonwoods, willows and, sometimes, mesquites once covered the flood plains, attracting and nurturing the densest concentration of animal life in the desert basins.  They formed meandering threads of green across the hard desert landscape.  Most of the riverine forests have now been replaced by farm land. 

Combined with the mountains and rivers, the Chihuahuan, Sonoran and Mojave Desert basins form what is perhaps the most diverse landscape in the United States.

Desert Food Chain Video.

Part 1 Desert Food chain - Introduction (this Page)
Part 2 Desert Food chain - The Producers
Part 3 Desert Food chain - The Cacti: A Thorny Feast 
Part 4 Desert Food chain - The Yuccas
Part 5 Desert Food chain - The Agave
Part 6 Desert Food chain - Desert Grasslands
Part 7 Desert Food chain - Desert Shrubs
Part 7 Desert Food chain - Desert Shrubs
Part 8 Desert Food chain - The annual forbs
Part 9 Desert Food chain - Mavericks of the Desert Plant
Part 10 Desert Food chain - Outlaw desert plants
Part 11 Desert Food chain -
Animals: The Consumers
Part 12 Desest Food chain - The Insects
Part 13 Desest Food chain - The Ugly, the Uglier and the Ugliest


In preparing this article, I have drawn, in no particular order, from various articles in DesertUSA’s Internet site; James A. MacMahon’s Deserts, part of the Audubon Society Nature Guide series; Ann and Myron Sutton’s The Life of the Desert, part of the McGraw-Hill Book Company Our Living World of Nature series; Richard Lachowsky’s The Chihuahuan Desert Internet site; The Tropical Rain Forest Internet site; Peter V. Sengbusch’s “The Flow of Energy in Ecosystems – Productivity, Food Chain & Trophic Level,” Botany Online, The Internet Hypertextbook, site; “Introduction to Food Chains,” Commonwealth Bank Foundation Internet site; “Landscape Changes in the southwestern United States: Techniques, Long-Term Data Sets, and Trends,” USGS Land Use History of North America Internet site; “Deserts,” National Wildlife Federation Internet site; R. C. Brusca’s “Deserts of the Southwest: Lecture Notes,” R. C. Brusca’s Internet site; the Mohave [sic] Desertscrub Internet site; “Physiography,” USGS Our Dynamic Desert Internet site; “What is a Desert?” Desert Biome Internet site; “Ecosystem Productivity,” Geography 210: Introduction to Environmental Issues Internet site; the Bioenergy Information Network Internet site; and “The Ecological Impacts of Human Development in the Southwest,” Earlham College Biology Major Internet site.

  

Shop for Products of the Southwest










Need More Desert Information ? Try Searching Our Site.

ninble


Home  | What's New | Places to Go | Things to Do | Desert Life | Desert Talk | Trading Post
Site Guide | Maps | Search | Index | About DUSA | Feedback| Privacy

Aquis Towels | Hotels | Polo Club News













Copyright © 1996-2013 DesertUSA.com and Digital West Media, Inc.